Factorise : $6 x^{2}+5 x-6$
$6 x^{2}+5 x-6$
We have, $a =6, b =5$ and $c =-6 $
$\therefore$ $l+ m=5$ and $lm = ac =6 \times(-6)=-36 $
$\therefore$ $l+ m =9+(-4) $
$\therefore$ $6 x ^{2}+5 x -6 =6 x ^{2}+9 x -4 x -6$
$=3 x (2 x +3)-2(2 x +3)=(2 x +3)(3 x -2)$
Thus, $6 x ^{2}+5 x -6 =(2 x +3)(3 x -2) $
Factorise : $3 x^{2}-x-4$
Verify whether the following are zeroes of the polynomial, indicated against them.
$p(x)=3 x^{2}-1,\,x=-\,\frac{1}{\sqrt{3}},\, \frac{2}{\sqrt{3}}$
Factorise : $x^{3}-3 x^{2}-9 x-5$
Check whether $-2$ and $2$ are zeroes of the polynomial $x + 2$.
Classify the following as linear, quadratic and cubic polynomials :
$(i)$ $x^{2}+x$
$(ii)$ $x-x^{3}$
$(iii)$ $y+y^{2}+4$